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THE POLARIZATION OF ATOMIC LINE RADIATION
EXCITED BY ELECTRON IMPACT

By I. C. PERCIVAL anxp M. J. SEATON
Department of Physics, University College London

(Communicated by H. S. W. Massey, F.R.S.—Received 6 February 1958)
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The dipole radiation emitted by an atom excited by a unidirectional electron beam has a non-
uniform angular distribution which is simply related to the percentage polarization P of the
radiation emitted perpendicular to the beam. P was first calculated using the Oppenheimer—
Penney (O.-P.) theory. In this theory the probability of excitation of an upper quantum state
and the probability of subsequent emission of a polarized photon from such a state are considered
independently.
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114 I. C. PERCIVAL AND M. J. SEATON ON THE

P is finally expressed in terms of the cross-sections @y, for excitation of states of definite com-
ponent of angular momentum along the direction of the electron beam. In general, P is dependent
on detailed numerical calculations of @;,, |, but the selection rule AM; = 0 removes this depend-
ence at threshold.

In the O.-P. theory allowance may be made for fine structure and hyperfine structure, but the
theory is ambiguous when the fs. or h.fs. separations are comparable with the line width. A theory
is therefore developed which is based on the calculation of the probability of a polarized photon
being emitted by the complete system of atom + electron. The ambiguity of the O.-P. theory is
removed by integration over line profiles, but the expressions reduce to O.-P. expressions when
the fs. or h.f:s. separations are much smaller or much larger than the line width. The Ly« line of
hydrogen is an intermediate case for which the line widths and the h.f.s. separations are com-
parable.

Assuming the validity of the Born approximation, a simple expression is obtained which allows
the @)y, to be calculated from the angular distribution of the scattered electrons.

Theoretical predictions are compared with experimental results. For the NaD lines the pre-
dicted polarization is small enough to escape experimental detection. Polarizations observed by
Skinner & Appleyard in 1927 for various Hg lines rise to maxima with decreasing electron energy,
and then tend to values close to zero at threshold. These experimental results at low energies
appear to be inexplicable in terms of the reactions considered, but if the polarization curve above
the maximum is extrapolated to threshold, the theory and experiment are found to be in reason-
able agreement. Further experimental work is thought to be desirable.

1. INTRODUCTION

Atomic line radiation excited by an electron beam will, in general, be polarized and will
have an anisotropic angular distribution. If the beam is in the Oz-direction the radiation
may be considered to be due to an electric dipole in the Oz-direction and two electric
dipoles of equal strength in the Ox and Oy-directions. Let I(d) be the radiation intensity
per unit solid angle in a direction making an angle # with Oz and let I' and I+ be the inten-
sities, in a direction perpendicular to Oz, with electric vectors respectively parallel and
perpendicular to Oz. The percentage polarization is defined by

100(1'—I+
P= _—Ig__i_—l_l_——) (1-1)

Using the fact that the intensity of dipole radiation, in a direction making an angle x with
the dipole axis, is proportional to sin? y one obtains

3(100—Pc0326):l. (1-2)

10) =1 " 2555 =5

The total intensity, integrated over all angles, is 47/. The polarization P may therefore be
determined either by measuring /' and I* or by obtaining the photon angular distribution
I(6) (Smit 1935). In order to determine absolute cross-sections by optical methods the
quantity / must be determined. To do this one may combine measurements of P with an
absolute measurement of /() for any one direction.

Experimental determinations of P for a number of cases were made about 30 years ago.t
Since that time little experimental work of this type has been attempted but a recent

1 Kossel & Gerthsen (1925) (Na); Skinner (1926) (Hg); Ellett, Foote & Mohler (1926) (Hg and Na);

Eldridge & Olson (1926) (Hg); Quarder (1927) (Hg); Skinner & Appleyard (1927) (Hg); Steiner (1928)
(He and Ne); Hanle & Quarder (1929) (Ne); Smit (1935) (He).
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POLARIZATION OF ATOMIC IMPACT RADIATION 115

revival of interest in the subject has resulted from the possibility of using polarization
measurements in conjunction with microwave studies (Dehmelt 1956; Lamb 1957; Lamb
& Maiman 1957).

The theory of polarization of impact radiation was first developed by Oppenheimer
(1927 a,b, 1928). The essential idea is to calculate the probabilities of exciting individual
quantum states and the probabilities of emission of polarized photons in transitions from
these states. The first attempt at detailed calculation was made by Penney (1932) who
showed that it was necessary to allow not only for electron spin and fine structure (fs.)
but also for nuclear spin and hyperfine structure (h.f.s.). The theory developed by Oppen-
heimer and by Penney will be referred to as the O.-P. theory. (For previous discussion of
this theory see Bethe (1933) and Lamb (1957).)

We distinguish three atomic energy levels: an initial level a (usually the ground level),
an upper level b populated after collision and before photon emission, and the final level ¢
reached after photon emission. We assume the experimental conditions to be such that
there is a completely isotropic distribution of spin directions in the incident beam and in
the initial states of the atom.

To simplify the discussion we also assume that the initial level of the atom has zero orbital
angular momentum. The anisotropy of the problem is then introduced entirely through
that of the motion of the incident electron. One calculates cross-sections for exciting quan-
tum states of the upper level with definite orbital angular momentum component A4, the
quantization axis being in the direction of the incident beam. If the upper level has well
defined f.s. and possibly h.f.s. the upper states must be described in a representation in
which spin and orbital angular momenta are coupled. One must therefore develop the
algebraic theory required to express cross-sections for excitation of vector-coupled states
in terms of those for excitation of M, states. The corresponding algebraic theory required
for the radiative transition probabilities is well known (Condon & Shortley 1951) ; we shall
find it convenient to use expressions in a form obtained by using tensor operator methods
(Racah 1942, 1943).

The interaction producing the collisional transition is assumed to be such that total spin
and total orbital angular momenta are separately conserved. Since the total component
of orbital angular momentum is assumed to be zero the angular momentum of the scattered
electron, after exciting the upper state M, must be equal to — M, #i. This rule enables us to
calculate the threshold polarization. At the excitation threshold the scattered electron
has zero velocity and hence zero orbital angular momentum and therefore only states with
M; = 0 can be excited. (A formal proof may be obtained by the method of Wigner (1948).)
Threshold polarizations can therefore be calculated without detailed calculation of cross-
sections. At energies above the threshold comparison of theory and experiment should
provide a sensitive test of the accuracy of calculated cross-sections. In the limit of high
energies the relative cross-sections for excitation of various A/ states may be obtained using
Born’s approximation (in cases for which no change of atom spin occurs during the collision).
The high-energy results are of less interest, however, since appreciable population of the
upper level by cascade transitions makes comparison with experiment more difficult.

The polarization and angular distribution of emitted photons is related to the angular
distribution of scattered electrons. Thus, if the angular distribution of the electrons is

15-2
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116 I. CG. PERCIVAL AND M. J. SEATON ON THE

isotropic the polarization must be equal to its threshold value. Assuming the validity of
Born’s approximation a simple relation between polarization and electron angular dis-
tribution may be obtained (§6-1).

Since we assume that there are no preferred spin directions the complete system becomes
more isotropic when additional spin variables are included. Thus, the calculated polariza-
tion for an isotope with nuclear spin is generally smaller than that for an isotope of the same
chemical element without nuclear spin. It is shown, however, that uncertainty arises in
the application of the O.-P. theory if there is doubt about the manner of specifying quan-
tum states. Such uncertainties arise whenever the f.s. or h.fs. splittings are of a magnitude
comparable with the natural line widths, and in the limit of vanishingly small f.s. or h.fs.
separations the O.-P. theory fails to give unambiguous predictions (§ 3-7). A re-examination
of the fundamentalideas of the theory appeared desirable, first, because the h.f.s. separations
for excited states of hydrogen are less than the line widths, and, secondly, because certain
experimental results for Hg are not consistent with theoretical predictions (§7-3). Our
approach (first suggested to us by Mr L. Castillejo) (§4) is to consider the probabilities
of photons of definite polarization being emitted by the entire system of atom and colliding
electron. Allowing for radiation damping we obtain an expression involving integrals over
the line profiles. The O.-P. expressions with h.f.s. are then obtained when there is negligible
overlap between the profiles of the h.f.s. components and the O.-P. expressions calculated
with neglect of nuclear spin are obtained when the h.fs. profiles overlap completely. The
polarization may also be calculated for intermediate cases.

Although some features of the observed results for Hg are shown to be in satisfactory
agreement with theory (§7-3), we are unable to offer a theoretical explanation of the fact
that the observed polarizations of a number of lines appear to go to zero at excitation
thresholds. It is considered that the experiments should be repeated using modern tech-
niques.

2. TaE OPPENHEIMER-PENNEY THEORY
'2-1. Radiative transition probabilities

Let b represent either a simple energy level or a group of closely spaced energy levels
and denote the quantum states of b by ¥ 4; the number of such states is equal to the statistical
weight w, of 4. Let ¢ represent a second level or group of levels with states ¢,. And let £
stand for x, y or z. Photons having polarization and directional distribution characteristic
of the emission by an electric dipole lying in the £-direction will be referred to as £-photons.
The probability per unit time of an atom in state f undergoing the transition §—y with
emission of a £-photon is

Adp>7) = ) | €1, 2)
where Clv) = g%i—:—g;ﬁ (2-2)

and where hv,, = E,— E_. We here neglect possible energy differences within b or ¢, assuming
such differences to be much smaller than /v,,. The total probability of emission of a §-photon
of frequency v, in transition from f is

Ag(p) = %Ag(ﬂ 7). (2:3)
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POLARIZATION OF ATOMIC IMPACT RADIATION 117

The total probability of emission of a photon of frequency v,,, obtained on summing (3)
over £, is the same for all quantum states £ of 5. We therefore put

Ab) = Z 4¢(h)- (2:4)

2-2. The percentage polarization

For light propagated in the Ox-direction let /- and I' be the intensities with electric vector,
respectively, perpendicular and parallel to Oz. Then

I*=D ;n(ﬂ) 4,(8) (2:5)
and I'— D S(p) 4,(4), (2:6)
A
where 7(f) is the number density of atoms in state £ and D is a constant. The percentage
polarization is ']+
Assuming symmetry about Oz we have 4,= A, = $(4—A,) and I = I'+2I*, where
I= Dn(b) A(b) - (2-8)
and n(b) = X n(f).
I
The expression for the polarization may therefore be written
3I'—1
P=100—-=. .
11 (2-10)

2:3. Calculation of populations and of rate coefficients

Suppose that a beam of electrons with electron number density 7(¢) and velocity v, is
incident on atoms in level a and that the number density #(«) of atoms in quantum states
a of a is the same for all «. Assume that the states £ are excited only by collisional transitions
from a and that they are depopulated only by radiative transitions to ¢. We denote the
cross-sections for a—f transitions by (¢—/£) and put

Qp) = 03 3 Qa—h). (211)
The rate of transitions to £ is then n(e) n(a) K(f), where the rate coefficient K(f) is
K(p) = 2,Q(6). (2:12)
Equating the number entering £ to the number leaving, which is 4(b) n(8), we obtain
ip) =MAAEE (213)
The rate of emission of {-photons from £ is
n(B) Ag(F) = n(e) n(a) Ky(B), (214)

where the rate coefficient is

K,(f) =%?an</9>- (2:15)
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118 I. C. PERCIVAL AND M. J. SEATON ON THE
The total rate coefficient for emission of &-photons is
v
Ky = S Ke(B) =4 2 4:(P) Q(B) (2-16)
7 A%
and the total rate coefficient for emission of all photons is
K=3K~0,0Q, (217)
3
where Q=2 Q(p)- (2-18)
s
The radiation intensity being proportional to the rate coefficient, we have in place of (2:10)
3K,—K
P=100"%2 4 (2:19)

3. EXPRESSIONS FOR THE POLARIZATION
3-1. Angular momentum conservation

In order to apply the O.-P. theory we require cross-sections for excitation of the various
quantum states of the upper level. We consider the LS coupling representations

= ASLM M, (3-1)

a=NS'L'MgM; (3-2)

for the initial states. We here use A and A’ to denote all quantum numbers other than those

specifying the angular momenta; for brevity the quantum numbers A and A’ will be
omitted in most of the following discussion.

To calculate the cross-section Q(SLM M;) we average over spins m, of the incident
electron and sum over spins m; of the scattered electron. We then have

Q(SLMs M)
_ Y% 1
T 0,2(285+1) (2L +1) M’MLm,m,

where f,, is the scattering amplitude (which is defined in terms of the asymptotlc form of the
wave function in § 4-2) and where the integration is over all dlrectlons k, of the scattered
electrons. The incident electron is in the direction of the vector ka

We now make two simplifying assumptions: (i) The interaction potential producing the
transition is assumed not to involve spin co-ordinates and (ii) the initial state  is assumed to
have zero orbital angular momentum (i.e. we put L’ = 0). The first of these gives us the
spin conservation condition

for the upper states, and

fl.fSLMgMLm.(S,L’M’ M m k, lk lzd(" b)> (3-3)

Ms+m, = Mg+m,.

Since orbital and spin angular momenta are separately conserved and since there is no
preferred spin direction, Q(SLMM,) is independent of M. Furthermore, owing to sym-
metry about Oz, Q(SLMM;) does not depend on the sign of M;. We may therefore put

Q(SLMsM;) = (25+1) Q1 (3-4)
giving Q(SL) = g Q1,1 (8-5)
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POLARIZATION OF ATOMIC IMPACT RADIATION 119
To obtain the conservation condition for orbital angular momentum we use the expansion
Somlomi K, |Ky) = Y, (K,) f(Bim,m, amk,), (3:6)

where Y, is a normalized spherical harmonic. Taking k, to be in the direction of the
quantization axis Oz the initial total orbital angular momentum in the Oz-direction is zero
and the conservation condition is therefore

The two conservation conditions giVe us the relation

Uy

02(2S'+1)am2m‘ffﬂm‘(“m lkb)fﬂm, am,k lk,,)dw )

= 0(5,°) Q) (3-8)
where f = SLM M, and f° = SLMIM}.

3-2. Cross-sections for fine-structure levels

With a weak spin-orbit interaction we use, in place of (3-1), the representation
f = SLJIM,. (3-9)
The transformation relation for the scattering amplitude is

fSLJM;m, MZ CM,g My, M,; fSLM,gMLm,, (3'1())

sMy,

where C is a vector coupling or Clebsch-Gordan coefficient. Using (3-8) we obtain the
cross-section transformation relation

QISLIM)) = 3 (Cirdnaa,)? Q(SLM My). (3-11)

It should be emphasized that this relation is valid only so long as LS coupling may be
assumed and so long as the initial state of the atom has zero orbital angular momentum.

The cross-section for excitation of the level SLJ is obtained in summing (3-11) over M,.
Using (3-4) and the relation

E C{;;,{rzzz{n C‘rl;t,"r:zzjm = 2%]]—:_11 8szzamzmz (3'12)
(Racah 1942), we obtain "
QSLT) = 2T oD, (3:13)

(25+1) (2L+1)

It is seen that the cross-sections for excitation of the levels SLJ are proportlonal to the
statistical weights (2J+1).

8-3. Cross-sections for hyperfine-structure levels
The representation for h.f.s. states is
f = SLJIFM, (3-14)

where I is the nuclear spin and F the resultant of J and 1. For the cross-sections we could
use the transformation

QISLIJIFMy) = (2I+1)"" 3 (Ciy, 4 5) Q(SLIM,). (3-15)
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120 I. C. PERCIVAL AND M. J. SEATON ON THE
It is convenient to consider the representation
f=SITLM M,, : (3-16)

in which § and I are coupled to give a total atomic spin angular momentum 7. In this

representation we have
1

@ST1) (@I 1) Qmr
The representations (3-14), (3-16) are related by the transformation

(SITLM M, | SLJIFMy) = C3, %, 5. (SI(T) LF| SL(J) IF), (3-18)
where  (SI(T)LF|SL(J)IF) = [(2T+1) (2J +1)}(—-1)F+S-T-TW(SLIF; JT) (3:19)
(Racah 1943, equation (5)), W being a Racah coefficient.t We then have

2J+1
(25+1) (21+1) TM§ML (2T +1) [W(SLIF; JT) City 1, 1,1% @ sy
(3-20)

Q(SITLM,M,) = (3-17)

Q(SLJIFM,) =

8-4. Transition probability transformation relations

The transformation relations are obtained in the most convenient form on expressing the
transition probabilities in terms of matrix elements of the tensor operator T, with com-

ponents T = 3rCulE), (3:21)

where the sum is over all atomic electrons and where
CAﬂ(f') = (%)%Ym(f')a (3-22)

Y,, being a normalized spherical harmonic. Putting
AB(f—y) = Cryo) | (v | T, | ) % (3-23)

we have for electric dipole transitions
A, (f~>y) = A9(p—>7) (3-24)
and A(B—=7y) = %A("’(/S’ —7)- (3-25)
Since T, does not operate on spin variables we have

A (SLM M, — S"L") = &(S,S") (M, 0) A(SL—SL"). (3-26)

For transitions between two states JAM,, J” M, we have, using the theory of tensor operators
(Racah 1942, equation (29))

AB(IM,—~J" M) = (CA}jiﬂ,{ll)zA(J——>J”), (3-27)
where A(J=>J") = 3 AB(JM,—~J"Mj). (3-28)
Mz

It should be emphasized that the quantum numbers SL, $”L" do not occur in these expres-
sions. Equations (3:27), (3-28) may therefore be used for intercombination electric dipole
transitions which can occur only if there are departures from LS coupling.

+ Tables of these coefficients are available (Simon, Vander Sluis & Biedenharn 1954 ; Obi et al. 1953).
+ We consider, in effect, the matrix elements of (¥ +iy)/4/2 and of z instead of those of x, y and z.
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POLARIZATION OF ATOMIC IMPACT RADIATION 121

In order to calculate the polarization of the total light in an optically allowed multiplet
SL—>SL", assuming the lines of the multiplet to be unresolved, it is necessary to know the
relative values of the transition probabilities A(SLJ->SL"J"). Using tensor operator
methods (Racah 1942, § 5) the required relation is obtained in the form

A(SLI —SL"J") = (2L+1) (2J"+1) W*(LJL"J"; S1) A(SL->SL"), (3-29)
where W is a Racah coefficient.
For transitions between h.f.s. states we obtain in a similar way
AW(JIFM,— J"IF"My) = (Ci L 5, )2 A(JIF— J'IF"), |

3-30
A(JIF— J'IF") = (2J+1) (2F"++1) W2(JFJ'F"; 1) A(J— J").) (8:50)

3-5. Expressions for the polarization without h.f.s.

We continue to assume an initial state with L’ = 0. With an upper state SLJ and a final
state J” we have

” v, A(SLJ—J" .
K(SLI>) = B0 S (Ol bl Qg (33D
0, A(SLT—J") 2J +1 S0 |
(2S+1) A(SLJ) 2L+1 j7 *'Mslt
For the total light in the multiplet SL—SL"” we have

K,(SL-SL")

M (2L+ 1) z (2J” + l) [ngsll\ldLMJ CMJ FOMy W(LJL”J” Sl)]2 Qlel’
(28+1) A(SL) TI MMMy (3-33)
3:33

K(SLT—J") = (3-32)

A(SL—SL")
?TS;T)T(*ST) 2 Qa1 (3-34)

These formulae are of interest for He, which has zero nuclear spin, and for Hg isotopes
having zero nuclear spin. We therefore consider the atomic spin § to be 0 or 1. With upper
states for which L = 0 the polarization is always zero in LS coupling. For upper P states
(L = 1) the polarization formula may be written

K(SL->SL") =

G(Q—Q)
P =100—"-210 3:35
ho QT Q; (385)
and for upper D states (L = 2)
G(Qu+ @, —20;)
P =100 0 1 2, 3:36
o Qo Qi+ €, (3:30)

The coefficients G, £, #, and %, are given in tables 1 and 2.

3:6. Expressions for the polarization of *P— 28 transitions with h.f.s.

Particular interest attaches to the Lya line of hydrogen and to the resonance lines of the
alkali metals. We therefore consider the case of an initial 2S state, an upper 2P state and a
final %S state.

From the unitary character of the transformation (3-18) we have

> (2T+1) (2J+1) W(SLIF; JT) (Co 552 =1. (3:37)

TMpM,,

16 ' VoL. 251. A,
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122 I. C. PERCIVAL AND M. J. SEATON ON THE
With L = 1, § = } the cross-section expression (3-20) may therefore be written
1
QUP, JIFMy) = o= (rLIIFMy) Q-+ [1—r(RLIIEM] Q) (3:38)
with T(3VJIFME) = 3 (2T+1) (2J +1) [W(ELF; JT)CY 05.,1% (3-39)

T

TABLE 1. POLARIZATION FORMULAE FOR He LINES SLJ—J’

P(S0J>J) =0, P(SLI>J) =100 S&=Q) © psoy, gy 100 ClQt G1=20)

ke Qo +h Q) ho Qo+ Q1+ 1, Q,
SLJ J G hy by by
011 0 1 1 1 —
1 -1 1 3 —
2 1 7 13 —
022 1 3 5 9 6
2 -3 3 7 10
3 3 15 29 26
110 1 0 —_ —_ —
111 0 -1 1 3 —
1 1 3 5 —_
2 -1 13 27 —_
112 1 21 47 73 _—
2 -7 11 29 —
3 1 7 13 —_
121 0 3 5 9 6
1 -3 7 15 18
2 3 41 81 78
122 1 3 9 17 14
2 -3 7 15 18
3 3 29 57 54
123 2 18 41 76 58
3 -9 11 25 34
4 3 15 29 26

TABLE 2. POLARIZATION FORMULAE FOR He muLTIPLETS SL—SL’

P(S0>S1) =0, P(S1>SL') =100 (&= © pisa . 577y — 1006(Qy+ @, —24s)

hy Qo+ 1 Qy’
SL L G ko By hy
01 0 1 1 1 —
2 1 7 13 —_
02 1 3 5 9 6
3 3 15 29 26
11 0 15 41 67 —_
2 3 73 143 —
12 1 213 671 1271 1058
3 213 2171 4271 4058

The transition probabilities are given byt
A4,(2P, JIFM,—28) = 1(31JIFMp) A, (3-40)
where 4 = A(?P—2S). We therefore have

K.(*R,>8) = gy = 7(HIIFM) {Qu+T(LIIFM) (Q— Q). (3:41)

1 This may be obtained on putting L” =0, § = } in (3-29) and (3-30), or may be obtained directly using
the transformation (3-18).
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POLARIZATION OF ATOMIC IMPACT RADIATION 123
Using (3-12) and the unitary relation for the transformation (3-19) we have
> 1(31JIFMy) = (2J+1) (21+1) (3-42)
FMjy
and therefore
K,(,28) = 5oty (07 11) (214D QutuBUD) (Q— Q) (3+43)
with p(FLJI) = ,z [7(31JIFM) ] (3-44)
FM,
Using Ko o5) -2 120 +Q0) (3-45)

the polarization formula is found to be

100[9u(31J7) — (21+1) (27 +1)] (@o— @)
[BR(ELIT) + @I+1) (2J+1)] Qo +8[@I+1) (2/+1) —u(31IDT G,
(3-46)

P(2P,~>28) =

TABLE 3. POLARIZATION FORMULAE FOR 2P ;—>2S TRANSITIONS

P(*P3—>28) =0, P(*P3—>28) =100 G(Qy— Q1)

hy Qo +h @,
I G ho hy Py(?P3—>28) P, (*P3—28)
0 3 5 7 60-0 —42-9
% 15 37 59 40-5 —25-4
1 33 161 289 20-5 —11:4
3 81 427 773 i 19-0 —-10-5
TABLE 4. POLARIZATION FORMULAE FOR 2P—2S MULTIPLETS
G(Qy—@Q))
P(2P—28) =100 ol 2t N 3 VA
( ) o Qo+ 1y Qy
I G I hy P,(?2P—>128) P, (*P—>28)
0 3 7 11 42-9 —27-3
3 15 53 91 28-3 —16-5
1 33 236 439 14-0 — 75
3 27 209 391 12-9 — 69

To obtain the polarization for the total light from the 2P —2S multiplet we sum (3-43)
and (3-45) over J. We obtain

2 100[9(310) — 6(21+ 1)] (Qo— Q1) ,
P(P—>"S) = i+ 62l + 1110y 3601+ s30T G, (347)
with HLD) = S u(3LI). (3-48)

For purposes of tabulation the polarization formulae are conveniently written as in
equation (3:35).

The coefficients have been evaluated for / = 0,1,1 and £. For all cases it is found that
P(*P;—%S) is zero. The coeflicients G, k, and 4, for P(*Py—2S) are given in table 3 and
those for P(?2P —2S) are given in table 4. We include values of P, the threshold polarization
((Q,/Qo) = 0), and of F,, the polarization in the limit of high energy, neglecting cascade

((Q1/Qo) = ©).

16-2
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124 I. C. PERCIVAL AND M. J. SEATON ON THE

8-7. The O.-P. theory and the principle of spectroscopic stability

The requirement of the principle of spectroscopic stability is that quantum mechanical
expressions for observable quantities should be independent of the choice of representation.
Thus, in the expression for the polarization the same results should be obtained using either
one of two different representations so long as both diagonalize the energy matrix for the
atom. It will be shown that the O.-P. theory does not always satisfy this requirement.

Consider first the case of 2P —2S transitions with 7 = 0. If the spin-orbit and relativistic
energy is sufficiently large to give two completely separate f.s. levels we may use the

representation f =P, JM,. (3-49)
We then have K,=% 3 [Cllod, Chbin)? Quans (350)
2 MMMy
which gives P(P->?8) — ?’-79%%—1“181—). (3-51)
0 1

But the magnitude of the f.s. energy does not appear in the O.-P. theory. In the limit of
vanishingly small fs. energy one should be able to use either the representation (3-49)

or the representation f = 2P, M, M, (3-52)
The second of these gives, in consequence of (3-4) and (3:26)

K,(?P—>28) =1,Q, (3-53)

d P(P>28) — 100 20— %1 3-54

an (P=7%8) = 1005 70, (8:54)

The O.-P. theory therefore fails to give unambiguous results in the limit of small f.s. energy.
With 740 a similar failure occurs in the limit of small h.f:s. energy.

In the next section it will be shown that these ambiguities arise from assuming that one
may calculate separately the probabilities of exciting individual quantum states and the
probabilities of emission of polarized photons in transitions from these states.

4. EMISSION OF RADIATION BY THE COMPLETE SYSTEM

In order to obtain an improved theory we consider the probability of polarized photons
being emitted by the complete system of atom plus colliding electron. We proceed by
generalizing the usual Bremsstrahlung formula.

4-1. Bremsstrahlung emission by an electron in a central field

Consider that an electron with energy E = Imv? is incident in the direction k ona
scattering centre at the origin of the co-ordinate system. The initial wave function has

asymptotic form ) o ek
Yk | 1) ~r k| ), (41)

where k = mv/fi and where £ is the unit radial vector r/r. Let a £&-photon be emitted with
energy hv = (E—E’) in the range d(/v), the electron being scattered with energy
E' =12k"%2m
t It is assumed at the same time that the fs. energy is not large enough to cause significant departures
from LS coupling.
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POLARIZATION OF ATOMIC IMPACT RADIATION 125
in a direction k’ lying within a solid angle dw(ﬁ'). The rate coefficient for this process is
Kgda)(k’) d(hv) = (( 2m) 572 ] k' | €| k) 12dw(k’) d(w), (4-2)
(see Heitler 1954) where C(v) is given by (2:2), where
(& |€]%) = [ y*(&'|x) gp(k | ) dr (43)
and where the conjugate function for the final state has asymptotic form
yH K |r) ~ e i (K| £) e7)r (4-4)

(the reason for the choice of (4-4) is discussed by Mott & Massey (1949, chap. XIV)).

4-2. Wave functions for collisions between an electron and a one-electron atom

Spin variables and symmetry requirements are for the moment neglected. Let E be the
total energy of the whole system and E, the energy of state p of the atom. When the atom is
in state p the colliding electron will have wave number £,/2m where

k, = ﬁz " E—E )T" | (4-5)

For a different total energy £’ we put
b= (E'—E,,)]’}. (46
Any wave function for the whole system may be represented by an expansion of the type
W(ry,ry) = ;%(rl) Xp(T2)s (47)

the ¢, being atom wave functions. We denote by ¥'(ak, | r;,r,) the wave function repre-
senting a state of the system for which an electron collides with an atom in state «, the total
energy being E. Then

W(ak, 1), 1) = %!/fp(l‘l) Xp(0K, | 1), (4-8)
where Xp(0K, | T) ~ 8(p, @) e*e™ 4 f, (ak, | £) elf7r. (4-9)
The total cross-section for excitation of state £ is
k A 2
Qake,~f) = 5% 3 [ | fylek, | #) [2do®), (+10)

assuming equal probabilities for the atom being initially in any one of the quantum states
a of level a.

We shall also require the conjugate of the wave function representing the final state of
the entire system for which the electron leaves the atom in state s, the final total energy
being E’. This conjugate function is

B (skg [ 1y, 1) = ;ﬁ(rl) Xg (5K | 1), (4-11)
where Xa (sKg | 1) ~ (g, ) e" T fiF (5K, | £) elker]r. (4-12)

It may be noted that ¥"+(sk;) is the complex conjugate of a function in _which outgoing
waves are associated only with state s of the atom and with the direction k


http://rsta.royalsocietypublishing.org/

j A Y

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

' \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

126 I. C. PERCIVAL AND M. J. SEATON ON THE

4-3. Radiative dipole transitions in the electron-atom system

With initial states W(ak,) we obtain, by an obvious generalization of the Bremsstrahlung
formula (4-2), the rate coefficient for emission of &-photons with energy v = (E—E’) in
the range d(av):

Ky d(i) = SO s 5[5 16+6 k) [2 ok (413)

= T(2n)3 e, <

Taking the ¢, to form an orthonormal set the matrix element may be written
(5 | €0+Ea | 2k,) = 3 (16 19) [ 5 (5 [ 12) ek, | v5) d,
+3 [k e Gk, | r) drye (414)
p ,
The second sum represents continuous Bremsstrahlung emission and need not be considered
further. The integral
| [ 2 s 1) ok, | 7 e (+15)

is generally very small owing to interference between functions x} and y, of different wave
number but it will be shown to increase without limit when ¢ = s and when (k,—£;) =0,
which occurs when iv = (E—E’) tends to i, = (E,— E,). Due to the factor (¢|§,|p) in
the first sum of (4-14) such contributions need be considered only when the transition p—s
is optically allowed. We are thus able to identify in (4-14) the contribution due to line
radiation.

4-4. Reduction of integrals

Since the main contributions to (4:15) come from large values of 7 the functions y,, x;
may be replaced by their asymptotic forms. The plane waves are conveniently expressed
in terms of spherical waves using the relation

et o 2T [5(R—8) et — 5(k +7) ik, (4:16)
This may be proved as follows. The usual plane wave expansion is
elkr = E (20+1) ( ) i f(kr) (4-17)

(Mott & Massey 1949, p. 22), where
| Si(x) = (m/2x)} T 4() (4-18)
has asymptotic form f,(x) ~ x~1sin (x—4Im). Therefore
wr L e #) [eikr (1)l @—ikr .
e 2ikrz,(21+l)Pl(k‘r) [elhr — (—1)te iFr]. (4-19)
We use the spherical harmonic addition theorem
Rk£) = REORAEY (4-20)

(Condon & Shortley 1951, p. 53), where the Y, are normalized spherical harmonics.
Since the Y, form a complete orthonormal set,

> VE(K) X, (#) = o(k—1), (4-21)
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where the d-function is defined on the unit sphere. We also require

(_l)lygm(f.) lm( i>) (4°22)
(Condon & Shortley 1951, p. 186). Equation (4-16) is readily obtained from (4:19),

(4-20), (4-21) and (4-22).
In the integral (4-15) we replace y} by

2m(q, 5)
ke

and, for p=a, we replace y, by

J) A i~ S0 A ) 1A eikq'r
—r)e™ —o( —K;+T) et SK | ) — .
[o(— ) et —(— K+ 1) e /g (sk, [ £) — (4-23)

Sylak, | £) ether)r. (4-24)

We then obtain integrals of the typet
f “eitstirdr and  8(g,s) f ® eito—kr dy, (4-25)
0 0

The second of these integrals will be large when (k,—£;) is small. It is readily shown that
such large integrals do not occur when p = « if ¢ is a ground state. Retaining only those
integrals which may become large we have

f 12 (5K, | 1) yp(ak, | T) dr = 8(q, 5) 2mik/~1£, (ak, | K)) f : clokordy  (4:26)

and substitution in (4-13) gives

C(v) md(hv)

Kelv) d(f) = =5 2™ zk' ’ S (s|£]p) £ ek, | K) f eitrkor dr | da(R).

(4-27)

The sum over s occurs outside the modulus. We may therefore consider only those final
states s = y belonging to an energy level ¢. Furthermore, we need consider only those photons
with energy close to iv,, = (E,—E,) ; in the sum over p the only large terms will be those for
which p = f, where / is a state belonging to level 5. We then have

C(v) md(hv)

K,00) diw) = LS s ko [ 5 01810 o, | ) [ vt ar [ au().

(4-28)

This is incomplete in that it gives an incorrect expression for the line profile: one obtains
an infinite intensity for the centre of the line (k; = £,) and a divergent integral for the total
number of quanta emitted in the line. This dlvergencc is a consequence of neglect of
radiation damping.

4-5. Corrections for radiation damping

In a more exact treatment one would consider the collision problem using a Hamiltonian
including radiative terms. One would then obtain coupling between the system of (electron
-+atom of energy E) and thesystem of (electron 4 atom of energy E’ + photon). The formulae
considered so far are obtained using first-order perturbation theory to calculate the pro-

Such integrals may be evaluated by introducing a factor e—¢" and letting ¢—0 after integration.
g y y g g g
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bability of a transition between these two systems. A more exact treatment of the coupling
terms shows that the radial factors r~! exp [ik47] should be replaced by

r-texp [(ikg— I'/2vp) 1],

where I'is the total downward transition probability from f. We consider the simplest case
for which f->¢ transitions are the only optically allowed transitions from £: then I' = A4(5)
as defined in §2-1.

The decaying exponential factor can be obtained by the following physical argument.
We suppose the atom to be excited by a wave packet at time ¢ = 0 and consider the wave
packet to be so long that it is essentially monochromatic so far as atomic excitation processes
are concerned yet so short that it can be considered to have left the atom completely at time
t,, where ¢, is small compared with the radiative lifetime 1/4 of the excited state. Ifstate
has been excited the probability of the atom still being in state £ at time ¢>>¢, varies as
exp [ —4¢]. The corresponding wave function should therefore be multiplied by a factor
exp [ —$4¢]. But since the wave packet moves with a velocity v, the wave function vanishes
unless ¢~ 7/vs. Therefore the factor exp [ —$4¢] may be replaced by exp [ —4r/2v;]. Since
the latter factor does not contain the time explicitly it will also occur in a time-independent
wave function, which may be considered to result from the superposition of wave packets
arriving at different epochs.

If we suppose that no further radiative transitions occur when the atom is in the state y
it follows that the integral over 7 in (4-28) should be replaced by

f : exp {i[(ky—k,) — 4[205] hdr — I&;@sz’fy_)’:ﬁgﬂ (4-29)

It will be recalled (§2-1) that we consider 4 and ¢ to be either single energy levels with
energies E,, E, or groups of very closely spaced energy levels with mean energies E,, E, .
Since the expression (4-29) will be large only when (k,—£;) is small we are interested only
in values of £, nearly equal to 4. Except when the difference (ks—k,) occurs explicitly we
may put ky = k, &, = k; and k, = k. Since

212
E_ Eﬁjik,,’ o E+ﬁk

(4:30)
E—FE =h, E;—E =hyg,
we obtain vp(kp—Kk,) = 2m(v—vp,). (4-31)

The expression for the rate coefficient then becomes

K(v) d(h) = Vbc) dV fl 7 1E18) Splek, | k) du( ) (4-32)

5 o2m(v—vg,)—34

The same formula would have been obtained had we included spin variables and used
properly symmetrized wave functions.}
- 1 In the same general case the quantum numbers «, 8, ¥ could be taken to include a specification of

spin quantum numbers for the colliding electron. The statistical weight w, should then include a factor of
2 for the statistical weight of the incident electron.
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4-6. Final results for the rate coefficients

An important feature of (4-32) is that the sum over f occurs inside the modulus; had
this sum occurred outside the modulus we would have been able to integrate (4-32) over
the line profile to obtain equation (2:16) of the O.-P. theory.

The rate coefficient for all polarizations

K@) = %Kg(v), (4-33)
may be simplified using the relation ’
Cvs) Z (Y [E18)* (v [ €] 8°) = (8, 8°) A(b) ; (4-34)

this may be proved by the methods of Condon & Shortley (1951, pp. 20 and 71) or by the
methods of Racah (1942). Using the expression (4-1) for the cross-section and assuming
b and ¢ to be single energy levels we obtain

v,Q(0) A(b) dv
[27(v—v,,) 12— [34(5)]*

which is the correct expression for the line profile. It follows from (4-35) that the width of
the line, defined as the frequency separation of the positions of the profile for which the
intensity is half maximum intensity, is (4/2m).

Integration of (4:32) over the line profiles may be carried out using the integral (for the
sake of simplicity it is assumed that all states « have identical energies):

K@v)d(h) =

(4-35)

J‘ dve _ 1 (4-36)
o [2M(v—vp0,) — 3A]* [2mi(v—vp,) — 4] 2mivgp+A°
where hvgpo = h(vg, —Vg,) = Eg—Eg (4-37)

and £ and f° are two states of . A convenient expression is obtained on introducing unit
complex vectors F(f) satisfying

A4
0 a4 .
P40 ) = g, (+:38)
The rate coefficient for emission of {-photons in 4 —¢ transitions is then
C A A
Klb>0) =250 5 137 1£15) F(8) ok, | &) [2 (). (+:39)

The rate coeflicient for all polarizations is obtained on summing (4-39) over £&. Using (4:10)

and (4-34) we obtain K(b-—>¢) =v,Q(b) in agreement with the O.-P. theory. Further
discussion of (4-:39) may therefore be restricted to the case £ = z.

5. RECONSIDERATION OF 2P->2S TRANSITIONS

In §3-7 we showed, taking 2P—>2S transitions as an example, that the O.-P. theory did
not always satisfy the principle of spectroscopic stability. The case of 2P—2S transitions
will be reconsidered in the present section using the expression (4-39).

17 Vor. 251. A.
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5-1. Zero nuclear spin

We consider initial states @ = A’2S, M, upper states f= A?P,JM, and final states

y = A"25, Mj. The fis. energy separation of the upper states will be #dy = E(*Py) —E(?P;).
The polarization depends on the ratio

' € = 2mdv|A (5:1)

of f.s. separation to line width. From (4-39) we have

K© (2P >28) = 0y C(vy)

44
%3 [ (8 My 2 2R TM)B) fon 5, My, | B) [2du(B) (52
M.,M.’;m;ms ’
with F*(J).F(J)=1 (5-3)
and F*(3).F(@) = [F*@) .FR)]* =5 Jlrie- (5:4)
We now use the relations
(8, M| 2| *B, JM,) = Cly b, 8(M, M) (%S, My | 2 | "B, MM, =0),  (55)
A=C(v,,) | (3S, M| z | ?P, MgM; = 0) |2, (5-6)
j;P,JMJm, = Z C%ls}‘JLhIJJﬁP,MsMng (5.7)
MgM;}
and
(M My, MIMS) 8Qus = 32 S [ FuatonMomi e, | B) Fugag (M ey | ) do(),
J ] a (5.8)
equation (5-8) following from (3-4) and (3-8). Substitution in (5-2) gives
K9 =22 5 | 3Chh it Clidtn, FI) 2 Qg (59)

MMMy J

We consider the two limiting cases of ¢ = 0 and of e—>00. For ¢<1 the line profiles overlap
completely and all vectors F(J), F*(J°) are parallel. We have therefore

v
KO =% 5 |3 Ol Clobe I Qua (510)
s Ly

From the orthonormality relations for the C-coefficients the sum over J is equal to
d(M, M) 8(M;, 0). Therefore KO = 0,0, (511)

which agrees with the result obtained in the O.-P. theory if we use the representation
p =P, M;M,. For ¢>1, on the other hand, there is negligible overlap between the line
profiles, and the vectors F*(}), F(3) are orthogonal. We have therefore

v(l
KO =% S [Clobuds Clo bl Qo (512
8L J
which agrees with the result obtained in the O.-P. theory using the representation
f="?P,JM,.
On expanding (5-9) we readily obtain, for any e,
K(ZO)+ €2 K(zw)

(e) —
Kz 1+¢?

(5'18)


http://rsta.royalsocietypublishing.org/

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

POLARIZATION OF ATOMIC IMPACT RADIATION 131

5:2. Nuclear spin and hyperfine structure

We assume the f.s. separation to be large compared with the line width. We then obtain
the O.-P. theory expression for f = ?P, JIFM,if the h.fs. separations are also much greater
than theline width and the O.-P. expression for # = 2P, JM, if the h.fs. separations are much
smaller than the line width.

For I = } each fs. level is split into two h.f.s. levels with separation dv,. For each value
of J we obtain as in the previous section
KOJ) +SKET)

1+¢2 ’

Ke(J) = (5-14)

where ¢% = (2mdy,/4)2.

5:3. Numerical results for hydrogen
The value of 4 for 2p— 1s transitions is 6:25 x 108sec™! giving a line width

(4/2mc) = 3-3x10~3cm™1.

The 2p f.s. separation is 0-36 cm 1.

The h.f:s. separations are (dvy/c) = 197 x 10~*cm~! and (dvy/c) = 0-79 x 10~3cm~1. The
h.fs. separations are therefore smaller than the line width but of comparable order of
magnitude. We must therefore use (5:13) in order to make an exact calculation of the
polarization. The values of ¢ are ¢f = 0-356 and ¢} = 0-057. For transitions from 2p; the
polarization is always zero. For 2p; we obtain

P(2pg) = 100(Qy— @1)/(1-694Q,+2-388Q),), (5:15)
compared with P(2p3) = 100(Q,— Q,)/(1-667Q,+2-333Q,)

in the O.-P. theory neglecting h.fis. and

P(2py) = 100(Qy— @,)/(2:467Q,+3:933Q,)
in the O.-P. theory including h.f:s. For the total radiation from the 2p level we obtain

P(2p) = 100(Q,— Q,)/(2375Qy 1 3-749Q,), (5-16)

compared with 100(Q,— @,)/(2-333Q,+3:667Q,) in the O.-P. theory without h.f:s. and
100(Q,—Q,)/(3:533Q,+6:067Q,) in the O.-P. theory with h.f:s.

It is seen that the exact expressions (5-15), (5:16) differ little from those obtained neg-
lecting h.f.s. This result has been used by Khashaba & Massey (1958) who give the polariza-
tion as a function of energy, the cross-sections being calculated using a distorted wave
approximation.

For atoms other than hydrogen the h.fs. separations will generally be large and the
theory with inclusion of h.f:s. should be used for all but highly excited states.

For hydrogen we may check that the collision time is small compared with the radiative
lifetime; putting R = v,,/A(2p) the condition is that R should be much larger than the Bohr
radius a,. We obtain R = 1-8 x 10’¢%a, where & is the energy of the scattered electron
measured in electron volts. The required condition is therefore satisfied for all cases of

practical importance.
17-2
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6. THE BORN APPROXIMATION

We consider the use of the Born approximation for the calculation of cross-sections for
excitation of M, states. We start by considering transitions in hydrogen.

6-1. The Born approximation for hydrogen

For transitions 15— nim the Born differential cross-section per unit solid angle is

nlm(K) K‘% | (nim | %% 1s) |2, (6-1)
where K=k,—k, (6-2)

is the change of momentum vector. Itissupposed that k; is in the direction of the quantiza-
tion axis; 7, then depends only on the energy and on the angle between k; and K,
The total cross-section is

Q(nim) = j - (K)KdK, (6:3)

where K, = (k;—%,) and K, = (/cl-l—/c,,) (Mott & Massey 1949, p. 226). Using (4+17) and
(4-20) we obtain

(nlm | €15 | 1s) = 4 z 7,(K) i*(nim | ,,(8) fi(K7) | 1) (6+4)
and, on carrying out the angular integrations,

(nlm | €™ | 1s) = (21+1)} Cx(K) il(nl | f(Kr) | 1s), (6-5)

where C,,, is the spherical harmonic operator defined by (3-22) and where
(0l | fi(k) | 15) = f B(r) Ji(K) P, (r) . (6:6)
Hence Ly = I“éfk (K 2] (al | fi(K) [ 19) J2 (67)
The differential cross-section 7, is obtained on summing [, over m. Since F(1) =1 we
obtain from (3-22) and (4-20) 2 I sz(ﬁ) 2=1 (6:8)

4k,
and therefore I,(K) = K% (2[+1) | (nl| f;] 1s) |2 (6-9)
Hence L (K) = | Con(R) |2L,(K) (6:10)
and | Q(nim) = k27/£ | C,(R) [21,(K) KdK. (6:11)
Ry 2 \Y i

We may put | CunlR) | = (m) | 2} (cosw) |, (6:12)

where ZJ™ is a normalized associated Legendre polynom1al and where o is the angle
between K and k,. Using (6-2) we have cosw = (K k ) = (K2+k3—£k2)/2Kk,. We thus

obtain
K2+4-2F
zpm ( 5KF, )

47 K2

Q) = oy | I(K) KdK, (6:13)
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where E,; = }(k}—£2). This relation between Q(nim) and I, may be applied to systems
other than hydrogen. It may be noted that, assuming the validity of the Born approxima-
tion, (6-13) may be used to determine Q(n/m) from measured angular distributions.

6-2. The high-energy limit
For any finite value of K we obtain [(K2+2E 1)/2Kk,]— 0 as k;—o0. Since

Q(nl) = k k L,(K)KdK, (6-14)

we obtain from (6-13)

l.m Q’%) (glil)lgi’"'(())l"’- ' (615)

Numerical values of this limit are given in table 5.

TABLE 5
2

L M) (5) 12 L M) (s) 12O
1 1 1 3 3 &

0 0 2 0
2 2 3 1 3

1 0 0 0

0 1

The physical significance of this result is that at high energies most of the scattering occurs
at small angles between k, and K, ; as &, —00 the change-of-momentum vector K is therefore
at right angles to k;. The polarization observed at high energies will generally be less than
that predicted, due to the upper state being populated by cascade. For the alkali metals,
however, the cross-sections for excitation of resonance lines will be much larger than all
other inelastic cross-sections and the observed polarization at high energies may not be
far different from that calculated neglecting cascade.

6-3. Born calculations for 3D — 1P fransitions in He

With separable He functions

Y(15%) = (1) Yus(ra),  ¥u(r) = (4m) 1P (1), }

Y(Lsnl L) = 274y (01) Y (T) + V1o (T2) Y1), (6:16)

%ls'(r) = (47’)_% r_lpls (7‘), ¢lnlm(r) = Ylm(f) T_IPM(T),
we obtain 1, = %l K241k+1) | (15| 15) 2| (| 5] 1) |2 (6:17)
We use the ground-state function

P, =2Z%e % (Z=217/16),
a He* function for P, and a hydrogen 34 radial function to obtain
128Z% K2
= —_ .1. .
(3dl‘f2 [ 1.5‘) 27(30)§ (062+K2)4 Z+ 3) (6 18)
, 64(2Z

and | (1] 1s) | = (2& Zgﬁ — 0-9785. (6-19)

17-3
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The total cross-section is shown in figure 1. Our results are in agreement with those of
Massey & Mohr (1931). The shape of the curve is very similar to that of the experimental
curves for 4!D and 5'D (see Bates, Fundaminsky, Leech & Massey 1950) but at 100eV
the calculated 3D cross-section is 0-5 X 1073743 compared with the much larger value of
2:5 x 1073mad measured by Dr D. W. O. Heddle (private communication). The discrepancy

00010~

0-0005

Q(maf)

0 z
VI

Ficure 1. Cross-section @ for excitation of He 3!D as a function of /(V[V,)
(V = energy of incident electron, V; = threshold energy). Born approximation.

1
4

1-0
- ‘ 2Q,/Q
05 i
- QlQ
b ~ o5 3 20,/Q

V(VolV)
Ficure 2. Cross-sections @) ,,, | for excitation of He 3!D, M, as functions of /(V,/V) (V, = threshold
energy, V =energy of incident electron). Curves give @Q,/Q, 2Q,/Q and 2Q,/Q, where
Q = Q,+2Q,+2Q,. Born approximation.

may be due to the approximate nature of the wave functions used rather than to the Born
approximation being unreliable. The ratios of the cross-sections @, ,,,, may be more accurate
than the absolute value of the total cross-section. The integrals in (6-13) have been evaluated
numerically; the ratios @y/Q, 2Q,/Q and 2@,/Q are shown in figure 2. For the polarization
we obtain by the method of §§2 and 3,

1 _ 300(Q+ @, —20,)
P( D—1P) = 5Qo‘*0‘9Q1+6Q2 P (6‘20)

the nuclear spin being zero for He. The calculated polarization curve is shown in figure 3.
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60

40

o ' e —— ] L y(I7)

\\
S
——

FicUure 3. Percentage polarization for 'D->1P transitions as functions of 4/(V/V,). Dashed curve
gives calculated result for He 3'D—!P (Born approximation). Full line curve glves experi-
mental result for Hg 7'D->6'P (Skinner & Appleyard 1927).

7. COMPARISON WITH EXPERIMENT
7:1. The sodium D lines

Polarization of the D lines excited by electron impact has not been detected (Kossel &
Gerthsen 1925 ; Ellett, Foote & Mohler 1926) ; in the energy range studied the polarization
may be less than 2 9. It was first suggested by Penney (1932) that the small polarization
is due to h.fs. but detailed calculations could not be made at that time since the value of
I for sodium was unknown. It is now known that for sodium 7/ = . We see from table 4
that the predicted polarization is +13 9%, at threshold and —7 9%, at high energies (neg-
lecting cascade).

Just beyond the threshold the polarization may decrease rapidly, since even at low
energies many partial waves are important for the calculation of the cross-section (Seaton
1955). The chances of detecting polarization should be better if the 3p3— 3s line were
isolated, since for this the values are +19 9, at threshold and —10-5 9, at high energies.
Further experimental work would be worthwhile.

7-2. Transitions in He

The only published results giving the polarization as a function of electron energy are
those of Lamb & Maiman (1957) for 3 3P — 23S, These are shown in figure 4. The calculated
threshold polarization is 366 %,. Lamb (1957) has calculated the threshold polarization
as a function of the strength of an applied magnetic field. In the limit of zero field strength
his results agree with ours. Further measurements at lower energies are required in order
to check whether the polarization tends to the calculated threshold value.
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7-3. Transitions in Hg

Mercury consists of a mixture of isotopes with normal abundances of 709, for = 0,
179%, for I = } and 13 9, for I = . For a first approximation we may neglect the isotopes
with 740 and neglect departures from LS coupling in calculating collision cross-sections;
this is the approximation of table 1. An idea of the error introduced by this approximation
is given by the work of Penney (1932) for the transitions 6s6p3P; - 6s21S,. From table 2

we obtain a threshold{ polarization P = —1009, while with allowance for departures
from LS coupling Penney obtains P = —929, for [ = 0, —53 9, for I = } and —48 Y, for
I = §; with the normal isotope mixture Penney’s calculations give P = —80 9.
10
2
&
0 | i
10 I'2 1-4
N(VIVy)

Ficure 4. Polarization curve for He 33P — 23S as measured by Lamb & Maiman (1957).

Typical observed polarizations, taken from the work of Skinner & Appleyard (1927),
are plotted as functions of ,/(V[¥;) in figure 5, V being the energy of the incident electrons,
7, the threshold energy. Very similar polarizations are observed for lines belonging to the
same spectral series. It might be expected that the polarization curves for Hg, with ground
configuration 6s%, would resemble those of similar lines in He, which has a ground 1s?
configuration. In figure 3 we have therefore plotted the observed polarization for Hg
71D, — 6P, and the Born approximation for the polarization of He 3 D, !P,, both being
given as functions of \/(V/V;).

The most puzzling feature of the experimental results is that with decreasing energy the
observed polarization rises to a maximum and then decreases, tending to values close to
zero at threshold. There is no evident theoretical explanation for this anomalous behaviour
at energies less than those at which maximum polarization occurs (an explanation advanced
by Oppenheimer (1927 6) has been shown by Lamb (1957) to be fallacious). If we con-
sider the observed results only for energies greater than those of maximum polarization
one may make plausible extrapolations (dashed curves of figure 5) which are in reasonable
agreement with the calculated threshold polarizations of table 1 (marked with crosses in
figure 5). Referring to figure 3 we see that, apart from the anomalous low-energy experi-
mental results, the agreement between the two curves is quite good, the discrepancy at high
energies being very probably due mainly to cascade. A further prediction of the theory is
that the polarization should be zero for upper S states. The observations for Hg give zero
polarization for upper !S states and zero for 35, — 3P, transitions. For 35, 3P, and 35, P,

+ We do not discuss further the numerical results of Penney for energies above threshold, sincethe Born—-
Oppenheimer approximation used has since been shown to be unreliable in this type of calculation (Bates
et al. 1950).
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the observed polarization is zero at moderate and high energies but rises to maxima at low
energies of —129, for 73S, —6°%P, and of +89, for 73S, 63P,. These small non-zero
values for upper S states may be due to departures from LS coupling.

We may conclude that, apart from the anomalous low-energy results, theory and experi-
ment for Hg are in reasonable accord. At energies less than those at which maximum
polarization occurs the total light intensity will be small (see figures 1 and 3) and any
background unpolarized light will become increasingly important. The problem of colli-
mating the electron beam also becomes more difficult at low energies. Since there still

14347 12967 12655 13650
71D,->61P, 63D, >63P, 7!D,~>63P, 63D,;—>63P,
60 % b 3 -
I ‘
a0 s A\ X
\ \
\ \
\
20 "\\
0 1 1 { 3 ,\l\—"n
1 3 1 2 3 1 2 1 2 3
60 o——3 23 3
40 =20
20 p -4QL / /
/\ X/ ! T
7 / ]
0 6ol ! N
1 2 60 i
..80_ L. -
-100% * b3
12652 13655 13663 12537
73D, ->63P, 63D, 6P, 61D,>63P, 63P,—>6521S,

Ficure 5. Polarization of Hg lines as functions of 4/(V]V,). Full line curves give experimental
results of Skinner & Appleyard (1927). Crosses give calculated threshold polarizations (for
isotopes with /=0 and assuming LS coupling for the collision process). Dashed curves are
extrapolations of full line curves neglecting experimental results for energies less than those at
which maximum polarization was measured.

appears to be no explanation of the disagreement with theory at low energies in terms of
the reaction Hg+e¢—Hg+e¢+ /v alone, more complicated pressure-dependent reactions
may be involved, and further experimental work using modern techniques would be
desirable.

Note added in proof, 20 August 1958: Baranger & Gerjuoy (1958) have discussed the
polarization of impact radiation from the standpoint of a compound ion model. Fite &
Brackmann (1958) have measured the polarization of Lya radiation excited by electron
impact.
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